Josef “Jeff” Sipek

Flight Planning My Cruise Power

When I was working on my private pilot certificate, there was one thing that was never satisfactorily explained to me: how to select the “right” line of the cruise performance table in the POH. Now that I’m a few years older and wiser, I thought I’d write up an explanation for those who, like me six years ago, aren’t getting a good enough answer from their CFIs.

I did my training in a Cessna 172SP, and so the table was relatively simple:

Reading it is trivial. Pick your cruise altitude, then pick the RPM that the instructor told you to use for cruising (e.g., 2200). Now, read across to figure out what your true airspeed and fuel flow will be. That is all there is to it.

When I got checked out in the club’s 182T, things got more confusing. The table itself got split across multiple pages of the POH because of the addition of a new variable: manifold pressure (MP).

The table works much the same way as before. First, select the table based on which altitude you’ll be cruising at, then pick the RPM and manifold pressure, and read across the true airspeed and fuel flow.

On the surface (bad pun intended), this seems like a reasonable explanation. But if you look closely, there are multiple combinations of RPM and MP which give you the same performance. For example, in the above table both 2200/21” and 2400/20” give more or less the same performance. When I asked how to choose between them, all I got was a reminder to “keep the MP at or below the RPM.” It was thoroughly unsatisfying. So, I stuck with something simple like 2300/23”.

Fast forward to today. I fly a fixed gear Cessna Cardinal (177B). Its manual contains a table much like the one above for a 182. Here is a sample for 4000’:

As before, I started with something simple like 2300/23”, but eventually I had a moment of clarity. When flying the 172 and 182, I paid for Wikipedia article: Hobbs time. In other words, it was in my best interest to cruise as fast as possible without much regard for which exact RPM/MP combination I used (all within club and manufacturer limitations, of course).

My bill for the Cardinal is different—it is based on Wikipedia article: tach time. This means that the lower the RPM, the slower I’m spending money. So, like any other optimization problem, I want to find the right spot where my bill, my cruise speed, and my fuel flow (and therefore endurance) are all acceptable.

If the tach timer is calibrated to run at full speed at 2700 RPM, running the engine at only 2300 equates to 85% while using 2400 equates to 88.9%.

So, say I’m flying for two hours. If I use 2400 RPM, I’ll be paying 1.78 hours. On the other hand, if I use 2300 RPM at the same power output, I’ll be paying for 1.70 hours. Not a big difference, but after 24 hours at 2300 instead of 2400, I would have saved a full hour of tach time.

I don’t yet have enough data to verify these figures, but collecting it is on my todo list.

While composing this post, I happened to find an article by Mike Busch about why lower RPM is better. He makes a number of compeling points—reduced noise, better propeller efficiency, and fewer revolutions the engine has to make (which should improve the engine’s lifetime and therefore the overall cost). I have to admit that Mike’s points seems more compeling than the small savings I’ve calculated above.

Flying around Mount Monadnock

Last week I planned on doing a nice cross country flight from Wikipedia article: Fitchburg. Inspired by Garrett Fisher’s photos, I took my camera and the 70-200mm lens with me hoping to get a couple of nice photos of the landscapes in New Hampshire.

Sadly, after taking off from KFIT I found out that not only was there the stiff wind that was forecasted (that’s fine) but the air was sufficiently bumpy that it wouldn’t have been a fun flight. On top of that, the ADS-B unit was having problems acquiring a GPS signal. (Supposedly, the firmware sometimes gets into a funny state like this. The good news is that there is a firmware update available that should address this.) I contacted KASH tower to check if they could see my transponder—they did, so I didn’t have to worry about being totally invisible.

Since I was already off the ground, I decided to do some nearby sightseeing, landing practice, and playing with the Garmin GNS 430 GPS.

First, I headed northwest toward Wikipedia article: Mount Monadnock. While I have seen it in the distance several times before, I never got to see it up close, so this seemed like a worthwhile destination.

As I approached it, I ended up taking out my camera and getting a couple of photos of the hills and mountains in New Hampshire. It was interesting how the the view to the north (deeper into New Hampshire) is hilly, but the view more east (and certainly south) is flatter. (Both taken near Mount Monadnock.)

While the visibility was more than good enough for flying, it didn’t work out that well for photography. In all of the photos, the landscape far away ended up being heavily blue-tinted. No amount of playing around with white balance adjustment in Lightroom was able to correct it. (Either the background was too blue, or the foreground was too yellow/brown.) That’s why all of these photos are black and white.

I made a full turn around Monadnock, taking a number of shots but this one is my favorite:

Once done with Monadnock, I headed south to the Wikipedia article: Quabbin Reservoir in Massachusetts. This is a view toward the south from near its north end:

At this point I started heading to KORH to do some landing practice. Since I was plenty busy, there are no photos.

I’ve never been to this airport before and landing at new airports is always fun. The first interesting thing about it is that it is situated on a hill. While most airports around here are at 200-400 feet MSL, this one is at 1000 feet. The westerly wind favored runway 29 which meant I got to see a second interesting aspect of this airport. The beginning of runway 29 is on the edge of the hill. That by itself doesn’t sound very interesting, but consider that the runway is at 1000 feet while the bottom of the hill (a mere 0.9 km away) is at 500 feet MSL. That is approximately a 17% grade. So, as you approach the runway, at first it looks like you are way too high but the ground comes up significantly faster than normal.

I am still hoping to do my originally planned cross country flight at some point. Rest assured that I will blahg about it.

Powered by blahgd