Josef “Jeff” Sipek

Timesavers: ZFS & BE

I’ve mentioned Boot Environments before. Well, earlier this week BEs and ZFS snapshots saved me a bunch of time. Here’s what happened.

I was in the middle of installing some package (pkg install foo) when my laptop locked up. I had to power cycle it the hard way. When it booted back up, I retried the install, but pkg complained that some state file was corrupted and it didn’t want to do anything. Uh oh. I’ve had similar issue happen to me on Debian with aptitude, so I knew that the hard way of fixing this issue was going to take more time than I’d like to dedicate to it (read: none). Thankfully, I use OpenIndiana which has ZFS and BEs.

  1. Reboot into a BE from a while ago (openindiana-3). The latest BE (openindiana-4) was created by pkg about a month ago as a clone of openindiana-3 during a major upgrade.
  2. Figure out which automatic ZFS snapshot I want to revert to. A matter of running zfs list -t all rpool/ROOT/openindiana-4 | tail -5 and picking the latest snapshot which I believe is from before pkg messed it all up. I ended up going an hour back just to make sure.
  3. Revert the BE. beadm rollback openindiana-4@zfs-auto-snap_hourly-2011-10-25-19h11
  4. Reboot back into openindiana-4.

After the final reboot, everything worked just fine. (Since the home directories are on a different dataset, they were left untouched.)

Total downtime: 5 minutes
Ease of repair: trivial

Your Turn

Do you have a corrupt package manager war story? Did you just restore from backup? Let me know in a comment.

Jasmine Strikes Back

Everyone can appreciate a cute photo of a cat. Here’s Jasmine again:

Jasmine

Recursion with Sun Studio

I mentioned my post about recursion & DTrace in the #dtrace, and one of the folks there asked about Sun’s/Oracle’s compiler — Studio. I happen to have version 12u1, so why not have some more fun? :)

First things first, the results. With -O1, both variants recurse — 6 calls followed by 6 returns. With -O2, the naive code still recurses, while the explicitly-coded-as-tail-recursive code tail-recurses.

Here are the disassemblies (for -O2). Naive-recursive:

08050aa0 <fac>:
 8050aa0:	55                   	push   %ebp
 8050aa1:	8b ec                	mov    %esp,%ebp
 8050aa3:	53                   	push   %ebx
 8050aa4:	83 ec 04             	sub    $0x4,%esp
 8050aa7:	83 e4 f0             	and    $0xfffffff0,%esp
 8050aaa:	8b 5d 08             	mov    0x8(%ebp),%ebx
 8050aad:	83 fb 01             	cmp    $0x1,%ebx
 8050ab0:	7f 07                	jg     8050ab9 <fac+0x19>
 8050ab2:	b8 01 00 00 00       	mov    $0x1,%eax
 8050ab7:	eb 12                	jmp    8050acb <fac+0x2b>
 8050ab9:	83 ec 0c             	sub    $0xc,%esp
 8050abc:	8d 43 ff             	lea    -0x1(%ebx),%eax
 8050abf:	50                   	push   %eax
 8050ac0:	e8 db ff ff ff       	call   8050aa0 <fac>
 8050ac5:	83 c4 10             	add    $0x10,%esp
 8050ac8:	0f af c3             	imul   %ebx,%eax
 8050acb:	8d 65 fc             	lea    -0x4(%ebp),%esp
 8050ace:	5b                   	pop    %ebx
 8050acf:	c9                   	leave  
 8050ad0:	c3                   	ret    

and tail-recursive:

08050aa0 <fac>:
 8050aa0:	55                   	push   %ebp
 8050aa1:	8b ec                	mov    %esp,%ebp
 8050aa3:	8b 55 08             	mov    0x8(%ebp),%edx
 8050aa6:	8b 45 0c             	mov    0xc(%ebp),%eax
 8050aa9:	83 fa 01             	cmp    $0x1,%edx
 8050aac:	7e 0d                	jle    8050abb <fac+0x1b>
 8050aae:	8d 4a ff             	lea    -0x1(%edx),%ecx
 8050ab1:	0f af c2             	imul   %edx,%eax
 8050ab4:	8b d1                	mov    %ecx,%edx
 8050ab6:	83 f9 01             	cmp    $0x1,%ecx
 8050ab9:	7f f3                	jg     8050aae <fac+0xe>
 8050abb:	89 45 0c             	mov    %eax,0xc(%ebp)
 8050abe:	89 55 08             	mov    %edx,0x8(%ebp)
 8050ac1:	c9                   	leave  
 8050ac2:	c3                   	ret 

I find it fascinating that Studio produced nearly identical code to gcc. The big differences that you can see are: (1) Studio defaults to saving the frame pointer while gcc omitted it, (2) gcc inserted a no-op to 16-byte align the loop, and (3) Studio uses an extra register to perform the subtraction (the n-1).

The subtraction surprised me, and so I examined the code more closely. My guess is that Studio attempts to move the subtraction as far up as possible to start it early. This way, by the time we actually need the subtracted value (the cmp instruction) it’s already available. Compare that to gcc’s sub followed immediately by cmp. Some processors are designed in such a way that the result of sub will be available by the time cmp wants to execute. Others are not.

Your Turn

Have you noticed any interesting compiler optimizations? Share them in a comment!

Recursion

Last night while reading about DTrace, I came across an example that involved tracing a simple recursive factorial program. I pointed it out to my girlfriend, Holly, since I thought that she’d find it interesting — the class she teaches has a section about recursion.

Here’s the original code:

extern int fac (int n);

int main(int argc, char **argv)
{
	int f;
	f = fac(6);
	return 0;
}

int fac (int n)
{
	if (n <= 1)
		return 1;
	else
		return n * fac (n - 1);
}

Pretty simple. I compiled it, and ran it with DTrace:

$ gcc -o fac orig.c 
$ cat fac.d 
pid$target::fac:entry
{
        trace (arg0);
}
pid$target::fac:return
{
        trace (arg1);
}
$ sudo dtrace -Fs fac.d -c ./fac
dtrace: script 'fac.d' matched 2 probes
dtrace: pid 1146 has exited
CPU FUNCTION                                 
  0  -> fac                                                   6
  0    -> fac                                                 5
  0      -> fac                                               4
  0        -> fac                                             3
  0          -> fac                                           2
  0            -> fac                                         1
  0            <- fac                                         1
  0          <- fac                                           2
  0        <- fac                                             6
  0      <- fac                                              24
  0    <- fac                                               120
  0  <- fac                                                 720

Cool! I thought I was done. Holly asked whether it would work with tail-recursion. Interesting, I thought…it might - depending on how gcc handles the function prologue and epilogue. The D script is a little different to dump both of the arguments. Here’s the result:

$ gcc -o fact tail.c
$ cat fact.d 
pid$target::fac:entry
{
        trace (arg0); trace(arg1);
}
pid$target::fac:return
{
        trace (arg1);
}
$ sudo dtrace -Fs fact.d -c ./fact
dtrace: script 'fact.d' matched 2 probes
dtrace: pid 1233 has exited
CPU FUNCTION                                 
  2  -> fac                                                   6                1
  2    -> fac                                                 5                6
  2      -> fac                                               4               30
  2        -> fac                                             3              120
  2          -> fac                                           2              360
  2            -> fac                                         1              720
  2            <- fac                                       720
  2          <- fac                                         720
  2        <- fac                                           720
  2      <- fac                                             720
  2    <- fac                                               720
  2  <- fac                                                 720

You can see the values getting calculated and passed down versus them getting calculated on during the return. That was fun to see. But wait! If this function is tail recursive, why are we seeing all these returns? It should be just one return! Doh! I didn’t compile with optimizations so gcc emitted the stupidest possible code. Easy enough to fix:

$ gcc -o fact -O2 tail.c 
$ sudo dtrace -Fs fact.d -c ./fact
dtrace: script 'fact.d' matched 2 probes
dtrace: pid 1304 has exited

$

Huh… nothing happened! fac was never called. Let’s see what gcc emitted:

$ objdump -S fact
...
Disassembly of section .text.startup:

08050d10 <main>:
 8050d10:       31 c0                   xor    %eax,%eax
 8050d12:       c3                      ret  

Great, the main function turned into a return 0 because the value returned by fac() was never used. Easy enough, let’s just return the value from main.

$ cat tail.c 
extern int fac (int n);

int main(int argc, char **argv)
{
        return fac(6);
}

int fac (int n)
{
        if (n <= 1)
                return 1;
        else
                return n * fac (n - 1);
}
$ gcc -o fact -O2 tail.c 
$ objdump -S fact
...
Disassembly of section .text.startup:

08050d10 <main>:
 8050d10:       b8 d0 02 00 00          mov    $0x2d0,%eax
 8050d15:       c3                      ret    

Argh! Thanks gcc, you replaced my fac(6) function call with the value 720 — that is the factorial of 6. Fine, let’s do this the hard way: get an int from the first argument and print it out. Also, to prevent inlining, let’s put it in a separate file. So, now we have:

$ cat fac.c
#include <stdlib.h>
#include <stdio.h>
#include <time.h>

extern int fac (int n);

int main(int argc, char **argv)
{
        printf("%d\n", fac(atoi(argv[1])));
        return 0;
}
$ cat fac_2.c
int fac (int n)
{
        if (n <= 1)
                return 1;
        else
                return n * fac (n - 1);
}
$ cat fact.c
#include <stdlib.h>
#include <stdio.h>
#include <time.h>

extern int fac (int n, int v);

int main(int argc, char **argv)
{
        printf("%d\n", fac(atoi(argv[1]), 1));
        return 0;
}
$ cat fact_2.c
int fac (int n, int v)
{
        if (n <= 1)
                return v;
        else
                return fac(n-1, n*v);
}

Now, if we run the two variants compiled with -O2, we get:

$ sudo dtrace -Fs fac.d -c "./fac 6"
dtrace: script 'fac.d' matched 2 probes
720
dtrace: pid 1397 has exited
CPU FUNCTION                                 
  2  -> fac                                                   6
  2  <- fac                                                 720

$ sudo dtrace -Fs fact.d -c "./fact 6"
dtrace: script 'fact.d' matched 2 probes
720
dtrace: pid 1399 has exited
CPU FUNCTION                                 
  5  -> fac                                                   6                1
  5  <- fac                                                 720

Weird, for both we can see only one function entry and return. Let’s try with -O1:

$ sudo dtrace -Fs fac.d -c "./fac 6"
dtrace: script 'fac.d' matched 2 probes
720
dtrace: pid 1393 has exited
CPU FUNCTION                                 
  6  -> fac                                                   6
  6    -> fac                                                 5
  6      -> fac                                               4
  6        -> fac                                             3
  6          -> fac                                           2
  6            -> fac                                         1
  6            <- fac                                         1
  6          <- fac                                           2
  6        <- fac                                             6
  6      <- fac                                              24
  6    <- fac                                               120
  6  <- fac                                                 720

$ sudo dtrace -Fs fact.d -c "./fact 6"
dtrace: script 'fact.d' matched 2 probes
720
dtrace: pid 1395 has exited
CPU FUNCTION                                 
  2  -> fac                                                   6                1
  2    -> fac                                                 5                6
  2      -> fac                                               4               30
  2        -> fac                                             3              120
  2          -> fac                                           2              360
  2            -> fac                                         1              720
  2            <- fac                                       720
  2          <- fac                                         720
  2        <- fac                                           720
  2      <- fac                                             720
  2    <- fac                                               720
  2  <- fac                                                 720

Ok, now were back to having call and return instructions for both cases — the tail recursive function is not actually tail recursing when it should. So, first moral of the story is: -O1 is not enough to make tail recursive functions tail recurse. The odd behavior of the non-tail recursive code with -O2 is still weird. Let’s disassemble it; first the simple recursive code:

08050d00 <fac>:
 8050d00:       8b 54 24 04             mov    0x4(%esp),%edx
 8050d04:       b8 01 00 00 00          mov    $0x1,%eax
 8050d09:       83 fa 01                cmp    $0x1,%edx
 8050d0c:       7e 0d                   jle    8050d1b <fac+0x1b>
 8050d0e:       66 90                   xchg   %ax,%ax
 8050d10:       0f af c2                imul   %edx,%eax
 8050d13:       83 ea 01                sub    $0x1,%edx
 8050d16:       83 fa 01                cmp    $0x1,%edx
 8050d19:       75 f5                   jne    8050d10 <fac+0x10>
 8050d1b:       f3 c3                   repz ret 
 8050d1d:       90                      nop    
 8050d1e:       90                      nop    
 8050d1f:       90                      nop    

Whoa! gcc turned the plain recursive code into a tail-recursive one. For comparison, here’s the disassembly of the explicitly-coded-as-tail-recursive function:

08050d00 <fac>:
 8050d00:       8b 54 24 04             mov    0x4(%esp),%edx
 8050d04:       8b 44 24 08             mov    0x8(%esp),%eax
 8050d08:       83 fa 01                cmp    $0x1,%edx
 8050d0b:       7e 0e                   jle    8050d1b <fac+0x1b>
 8050d0d:       8d 76 00                lea    0x0(%esi),%esi
 8050d10:       0f af c2                imul   %edx,%eax
 8050d13:       83 ea 01                sub    $0x1,%edx
 8050d16:       83 fa 01                cmp    $0x1,%edx
 8050d19:       75 f5                   jne    8050d10 <fac+0x10>
 8050d1b:       f3 c3                   repz ret 
 8050d1d:       90                      nop    
 8050d1e:       90                      nop    
 8050d1f:       90                      nop

Do you see it? It’s virtually identical to what gcc emitted for the naive code.

So there you have it folks. The compiler is smarter than you, more consistent than you, and less likely to screw up compared to you when converting a recursive function into a tail-recursive one. In general, you should not prematurely optimize.

In case you care, I’ve used gcc 4.6.1 for these experiments on OpenIndiana.

Your Turn

Do you have an interesting compiler optimization story? Share it in a comment!

update_drv: adding a driver alias

Over the weekend, I got fed up with my laptop (Thinkpad T520) using the VESA driver even though I have an NVidia card. After some searching online, I came to the conclusion that the nvidia driver I had installed (280.13) should work with my card but there was an alias missing. So, I ran the following to add an alias for the PCI ID:

# update_drv -a -i '"pciex10de,1057"' nvidia

A reboot (really, X restart would have done, but it is nice to know that things come up as expected during a reboot) later, I was greeted by accelerated graphics. Yay!

Of course I created a bug for OpenIndiana to have the missing alias added. This post is supposed to serve as a reminder for myself about how to use update_drv.

DTrace: qsort use in Firefox, part 2

Earlier, I wrote about some silly qsort behavior in Firefox. I couldn’t help but dig a bit deeper.

Before, we concluded that there were a lot of 8-element, 4-byte element sorts. What are these used for? What part of Firefox is causing these? DTrace to the rescue.

First, let’s change the last DTrace command from last time a bit. First of all, let’s look at 4-byte element invocations only (arg2 equals 4) and let’s aggregate on the caller function name:

# dtrace -n 'pid1120:libc:qsort:entry/arg2==4/{@[ufunc(ucaller)]=llquantize(arg1, 10,0,6,20)} tick-60sec{printa(@)}'

...
  1  75455                      :tick-60sec 
  libnss3.so`DPCache_GetUpToDate                    
           value  ------------- Distribution ------------- count    
             < 1 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 14       
               1 |                                         0        

  libglib-2.0.so.0.2501.0`g_array_sort              
           value  ------------- Distribution ------------- count    
             700 |                                         0        
             750 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1        
             800 |                                         0        

  libfontconfig.so.1`FcFontSetSort                  
           value  ------------- Distribution ------------- count    
              55 |                                         0        
              60 |@                                        4        
              65 |                                         2        
              70 |                                         0        
              75 |@@@@                                     20       
              80 |@@@@@                                    24       
              85 |@@@@@@@                                  36       
              90 |@@@@@                                    26       
              95 |                                         0        
             100 |@@@@@@@@@@@@@@                           76       
             150 |@@@@                                     22       
             200 |                                         0        

  libcairo.so.2.10800.10`_cairo_bentley_ottmann_tessellate_bo_edges
           value  ------------- Distribution ------------- count    
               3 |                                         0        
               4 |@                                        59       
               5 |                                         0        
               6 |                                         32       
               7 |                                         0        
               8 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@            2357     
               9 |                                         0        
              10 |@@                                       137      
              15 |@@@                                      215      
              20 |@                                        52       
              25 |                                         12       
              30 |@                                        58       
              35 |@@                                       200      
              40 |@                                        67       
              45 |                                         3        
              50 |                                         2        
              55 |                                         2        
              60 |                                         7        
              65 |                                         0        
              70 |@                                        67       
              75 |                                         0        
              80 |                                         0        
              85 |                                         0        
              90 |                                         0        
              95 |                                         16       
             100 |                                         0   

We see four unique functions that call qsort. It doesn’t take long to spot the one we were looking for: _cairo_bentley_ottmann_tessellate_bo_edges in libcairo.so. Interesting, so it turns out that it wasn’t Firefox itself doing all these sorts (8-element, 4-byte element) but rather the Cairo graphics library. It would also seem that it is the only place that does these sorts. Let’s see how Firefox is involved in this.

# dtrace -n 'pid1120:libc:qsort:entry/arg2==4 && arg1==8/{@[ustack()]=count()} tick-60sec{printa(@)}'

...
  0  75455                      :tick-60sec 

              libc.so.1`qsort
              libcairo.so.2.10800.10`_cairo_bentley_ottmann_tessellate_bo_edges+0x172
              libcairo.so.2.10800.10`_cairo_bentley_ottmann_tessellate_polygon+0x41f
              libcairo.so.2.10800.10`_cairo_path_fixed_fill_to_traps+0x150
              libcairo.so.2.10800.10`_cairo_clip_clip+0xe3
              libcairo.so.2.10800.10`_cairo_gstate_clip+0x44
              libcairo.so.2.10800.10`cairo_clip_preserve+0x31
              libxul.so`__1cKgfxContextEClip6M_v_+0x24
              libxul.so`__1cInsWindowNOnExposeEvent6MpnK_GtkWidget_pnP_GdkEventExpose__i_+0x56e
              libxul.so`__1cPexpose_event_cb6FpnK_GtkWidget_pnP_GdkEventExpose__i_+0x72
              libgtk-x11-2.0.so.0.2000.0`_gtk_marshal_BOOLEAN__BOXED+0x7b
              libgobject-2.0.so.0.2501.0`g_closure_invoke+0xdf
              libgobject-2.0.so.0.2501.0`signal_emit_unlocked_R+0x9f2
              libgobject-2.0.so.0.2501.0`g_signal_emit_valist+0x6d2
              libgobject-2.0.so.0.2501.0`g_signal_emit+0x28
              libgtk-x11-2.0.so.0.2000.0`gtk_widget_event_internal+0x24d
              libgtk-x11-2.0.so.0.2000.0`gtk_widget_send_expose+0x98
              libgtk-x11-2.0.so.0.2000.0`gtk_main_do_event+0x46f
              libgdk-x11-2.0.so.0.2000.0`_gdk_window_process_updates_recurse+0x291
              libgdk-x11-2.0.so.0.2000.0`_gdk_windowing_window_process_updates_recurse+0x24
              184

This counts the number of 4-byte element, 8-element arrays qsort aggregated on the stack trace. We get to use ustack() here because we are in userspace (stack() would give us the kernel stack trace). Where is Firefox in this mess? libxul.so. This is the limit of my knowledge of Firefox internals and someone more knowledgeable could tell you more.

Your Turn

Do you use DTrace? Do you have some interesting war stories? Let me know in the comments!

DTrace: qsort use in Firefox

I’ve talked about OpenIndiana a bunch. I’ve mentioned several of its features. Let me tell you about my Wikipedia article: DTrace experiments from today. Inspired by Wikipedia article: Con Kolivas, I decided to see how Firefox uses the qsort C function.

First things first, let’s look at what the function signature looks like.

void qsort(void *base, size_t nel, size_t width,
           int (*compar)(const void *, const void *));

The second argument contains the number of elements.

Now, let’s take a look at DTrace. We want the pid provider, which lets us instrument a specific process. In my case, Firefox was pid 1069. pid1069:libc:qsort:entry is the name of the probe that will fire every time qsort in libc.so is called by Firefox (pid 1069). Let’s aggregate the second argument (the number of elements). To keep things sane, I used the llquantize function. It is a log-linear quantization function that was rather well explained by Bryan Cantrill. (Base 10 with buckets between zero and one million seemed reasonable enough.) Additionally, I wanted DTrace to give me the current histogram every minute — that’s why there is the tick-60sec probe.

# dtrace -n 'pid1069:libc:qsort:entry{@=llquantize(arg1, 10,0,6,20)} tick-60sec{printa(@)}'

...
  1  78738                      :tick-60sec 

           value  ------------- Distribution ------------- count    
             < 1 |                                         2        
               1 |                                         0        
               2 |                                         21       
               3 |                                         2        
               4 |@@@@                                     365      
               5 |                                         1        
               6 |@                                        132      
               7 |                                         0        
               8 |@@@@@@@@@@@@@@@@@@@@@                    1923     
               9 |                                         0        
              10 |@                                        135      
              15 |@@                                       194      
              20 |@                                        134      
              25 |                                         9        
              30 |@@@                                      246      
              35 |                                         31       
              40 |                                         8        
              45 |                                         0        
              50 |                                         0        
              55 |                                         10       
              60 |                                         1        
              65 |                                         10       
              70 |                                         39       
              75 |                                         2        
              80 |@                                        112      
              85 |@                                        56       
              90 |@                                        82       
              95 |                                         1        
             100 |@                                        132      
             150 |@                                        90       
             200 |                                         0        
             250 |                                         0        
             300 |                                         4        
             350 |                                         0        

Interesting! After several minutes of browsing various websites, we can see that Firefox really likes to sort 8-element arrays. (The value column is the bucket for the various array lengths. The count column specifies how many times there was a qsort call for each bucket.) Let’s dig a little deeper. Sorting 1 byte array elements is very different from sorting 1 MB elements. It would be really nice if we could break the histogram down into several histograms — one for each size. Well, guess what? DTrace lets you do that very easily.

Note that the command changed only a little. Now, in addition to looking at the second argument (the array length), DTrace breaks down the distribution based on the value of the third argument (the array element size). Since I visited different websites and Firefox does caching, the distribution of qsorts is a bit different — but it is still close enough.

# dtrace -n 'pid1069:libc:qsort:entry{@[arg2]=llquantize(arg1, 10,0,6,20)} tick-60sec{printa(@)}'

...
  4  78738                      :tick-60sec 
               52
           value  ------------- Distribution ------------- count    
               1 |                                         0        
               2 |@@@@@@@@@@@@@@@@@                        60       
               3 |@@                                       9        
               4 |@@@@@                                    17       
               5 |                                         0        
               6 |@@@@@@@@@@@@@@@                          55       
               7 |                                         0        
               8 |@                                        3        
               9 |                                         1        
              10 |                                         0        

                8
           value  ------------- Distribution ------------- count    
             < 1 |@@@@@@@@@@@@@                            2        
               1 |                                         0        
               2 |                                         0        
               3 |                                         0        
               4 |                                         0        
               5 |                                         0        
               6 |                                         0        
               7 |                                         0        
               8 |                                         0        
               9 |                                         0        
              10 |                                         0        
              15 |                                         0        
              20 |                                         0        
              25 |                                         0        
              30 |                                         0        
              35 |                                         0        
              40 |                                         0        
              45 |                                         0        
              50 |                                         0        
              55 |                                         0        
              60 |                                         0        
              65 |                                         0        
              70 |                                         0        
              75 |                                         0        
              80 |                                         0        
              85 |                                         0        
              90 |                                         0        
              95 |                                         0        
             100 |                                         0        
             150 |                                         0        
             200 |@@@@@@@@@@@@@@@@@@@@                     3        
             250 |                                         0        
             300 |@@@@@@@                                  1        
             350 |                                         0        

                4
           value  ------------- Distribution ------------- count    
             < 1 |                                         12       
               1 |                                         0        
               2 |                                         1        
               3 |                                         0        
               4 |@@@@@@@                                  1351     
               5 |                                         0        
               6 |@                                        247      
               7 |                                         0        
               8 |@@@@@@@@@                                1868     
               9 |                                         0        
              10 |@@@                                      594      
              15 |@@                                       422      
              20 |@                                        230      
              25 |                                         4        
              30 |@@@@@@                                   1193     
              35 |@@                                       466      
              40 |                                         57       
              45 |                                         63       
              50 |                                         1        
              55 |                                         18       
              60 |@                                        190      
              65 |@@                                       341      
              70 |@                                        207      
              75 |                                         2        
              80 |                                         56       
              85 |@                                        158      
              90 |                                         46       
              95 |                                         0        
             100 |@@                                       350      
             150 |@                                        206      
             200 |                                         3        
             250 |                                         10       
             300 |                                         8        
             350 |                                         0        
             400 |                                         0        
             450 |                                         0        
             500 |                                         0        
             550 |                                         0        
             600 |                                         0        
             650 |                                         0        
             700 |                                         1        
             750 |                                         10       
             800 |                                         0        
             850 |                                         0        
             900 |                                         0        
             950 |                                         0        
            1000 |                                         0        
            1500 |                                         0        
            2000 |                                         0        
            2500 |                                         0        
            3000 |                                         8        
            3500 |                                         0        

As you can see, there are now three histograms printed — that’s because DTrace saw 3 unique values of arg2. The first histogram is for 52-byte array element sorts. There weren’t many of those over the few minutes of browsing I did. The second is for 8-bytes elements — there are six of those total! The third distribution is where things get interesting. These are all the sorts of 4-byte array elements. Now we know that the large amount of 8-element sorts Firefox performs are on 4-byte element arrays. I wonder what that’s about. We also see that there were eight times that Firefox ended up sorting an array that had somewhere between 3000 and 3500 4-byte elements. Eeek!

DTrace is a really powerful tool. It lets you inspect the operation of a system with minimal disruption (the performance overhead is rather small). I hope to post more analyses of various software in the future.

I should add, this experiment was conducted with Firefox 3.6.12 on OpenIndiana 151a.

Powered by blahgd